Die Tage werden wieder länger und wärmer. Menschen füllen die Parks und Strassencafés. Farbige Bäume und Wiesen schmücken die Landschaft. Der Frühling ist da und auch der Sommer ist schon nah. Das Leben spielt sich wieder vermehrt draussen ab. Doch für etwa 20% der Bevölkerung startet auch die jährliche Heuschnupfensaison. Der Pollenflug wird beeinflusst durch die Wetterlage. Der Klimawandel und die damit erhöhten Temperaturen fördern das Blühen der Pollen (MeteoSchweiz, 2022).
Es gibt viele verschieden Pollenarten. In der Schweiz sind die folgenden sechs für den Grossteil der Pollenallergien verantwortlich: Gräser-, Birken-, Eschen-, Hasel-, Erlen- und Beifusspollen (MeteoSchweiz, 2017). Die ausgelösten Symptome sind vielfältig und unterschiedlich stark ausgeprägt, von juckenden Augen, über eine konstant laufende und verstopfte Nase bis hin zu Asthma und einer generellen Müdigkeit. Was passiert in unserem Körper bei einer solchen Allergie? Wenn wir einmal darunter leiden, werden wir immer darunter leiden? Welche Möglichkeiten haben wir zur Bekämpfung der Symptome?
Um Pollenallergien zu verstehen, ist es wichtig, sich einen Überblick über das Immunsystem zu verschaffen. Dieses ist jedoch sehr komplex. Im Folgenden soll nur umrissen werden, was für das Grundverständnis von Allergien relevant ist. Das Immunsystem besteht aus einem angeborenen (= innaten) und einem erworbenen/adaptiven Teil. Bei einer allergischen Antwort beispielsweise auf Gräserpollen spielen die beiden Anteile zusammen. Eine der Aufgaben unseres Immunsystems ist die Abwehr von für uns schädlichen Stoffen. Unser Immunsystem hat die Fähigkeit, diese über verschiedene Mechanismen zu erkennen und zu bekämpfen. Bei Allergien, so auch bei Pollenallergien, wird das Immunsystem unnötig aktiv. Stoffe werden als gefährlich und fremd markiert, die unserem Körper eigentlich gar nicht schaden. Eine Allergie wird wie folgt definiert: «Bei einer Allergie handelt es sich um eine überschießende, spezifische Immunreaktion gegen körperfremde, eigentlich apathogene Antigene (Allergene) mit der Folge einer akuten Entzündungsreaktion, die u.U. chronifizieren kann» (ViaMedici, 2021).
Allergien können je nach Reaktionstyp in verschiedene Gruppen eingeteilt werden. Bei einer Pollenallergie gehen wir von einer Typ-I Reaktion aus. Diese ist gekennzeichnet durch eine sofortige mehr oder weniger lokale Reaktion. Für eine solche Reaktion müssen unterschiedliche Zellen rekrutiert werden, die unseren Körper verteidigen. Hier relevant sind die Mastzellen. Diese sind wichtig für unser Immunsystem, denn sie rekrutieren auch die neutrophilen Granulozyten zur Bekämpfung von Schädlingen (Immunologie für Jedermann, 2022). Die Mastzellen sind jedoch auch bei Allergien essentiell. Bei einer allergischen Reaktion beispielsweise auf Pollen werden von Mastzellen bestimmte Stoffe ausgeschüttet; ein hier wichtiger Botenstoff ist das Histamin. Dieser wirkt über Rezeptoren auf viele verschiedene Bereiche unseres Körpers. Das Binden von Histamin an einen Rezeptor auf unseren Blutgefässen kann verschiedene Folgen haben: Die Blutgefässe werden erweitert, die Durchlässigkeit von Gefässen wird erhöht oder in der in der Lunge werden die Bronchien verengt, was zu einer erschwerten Atmung führen kann.
Doch wie soll dieser Effekt unserem Körper bei der Bekämpfung von einem fälschlicherweise als schädlich erkannten Stoff helfen? Wir atmen Pollen beispielsweise durch die Nase ein. Die Nase beginnt, Schleim zu produzieren, zuzuschwellen und zu jucken, damit dieser Schädling weniger gut eintreten kann und, falls er schon drin ist, wieder herausbefördert werden kann. Die Verengung in den Bronchien hindert uns am tiefen Einatmen und verhindert so, dass grosse Mengen der Pollen eingeatmet werden.
Therapeutisch gibt es drei Möglichkeiten: Einerseits das Meiden der Allergene, was bei einer Pollenallergie nicht konsequent umsetzbar ist, daneben gibt es spezifische Immuntherapien oder auch symptomatische medikamentöse Therapien. Die spezifische Immuntherapie kennt man auch unter dem Begriff «Desensibilisierung». Bei dieser Therapie wird das Immunsystem sozusagen ”trainiert”. Das Ziel ist es, durch eine stetige Zufuhr kleiner Mengen Allergene eine Toleranz gegen diese zu entwickeln und schlussendlich eine Überempfindlichkeitsreaktion zu unterbinden. Es gibt die Möglichkeit, die verdünnten Allergene in steigender Dosis unter die Haut zu spritzen oder als Tablette unter die Zunge zu legen (AHA, 2022). Eine solche Therapie dauert 2-3 Jahre und muss daher gut durchdacht werden.
Die bekannteste Therapieoption ist vermutlich das Blockieren der H1-Rezeptoren von Histamin. Dadurch können die ausgelösten Symptome verhindert werden. Dafür benutzen wir Antihistaminika in Tablettenform. Die älteren Generationen dieser Medikamente führten zu starker Müdigkeit, da sie anders als die neueren Generationen auch auf das zentrale Nervensystem wirken konnten. Zur neueren Generation gehören beispielsweise Arzneimittel mit dem Wirkstoff Loratadin oder Fexodfenadin, welche die Blut-Hirn-Schranke nicht passieren können und dadurch keine zentral dämpfende Wirkung erreichen können.
Weiter gibt es die Möglichkeit zur lokalen Therapie mit Nasen- oder Augentropfen. Wirkstoffe wie Xylometazolin, Oxymetazolin sind sogenannte alpha1-Sympatomimetika. Das bedeutet, dass sie an Alpha-1-Rezeptoren die Wirkung vom Sympathikus nachahmen. Der Sympathikus ist Teil des vegetativen Nervensystems. Er wird v.a. in Stresssituationen aktiviert und hilft uns bei der Fight-or-Flight-Reaktion. Viele Prozesse werden dadurch ausgelöst, beispielsweise werden Blutgefässe verengt und unser Blutdruck erhöht. In der Nase hat das die Folge, dass die Muskulatur und die Gefässe kontrahieren, was eine abschwellende Wirkung zur Folge hat (DocCheck, 2022).
Für viele Betroffene wirken die oben genannten Methoden zur Bekämpfung von Pollenallergien nur begrenzt. Deshalb ist es sinnvoll, sich an ein paar Grundregeln zu halten, die helfen, den Kontakt mit diesen Allergenen zu minimieren. Einerseits sollte Wäsche nicht im Freien getrocknet werden, damit sich die Pollen nicht darauf festsetzen können. Die Fenster sollten geschlossen bleiben, sofern keine Pollenfilter vorhanden sind. Falls man doch Lüften will, sollte man sich informieren, wann die Pollenlast am kleinsten ist, bspw. in städtischen Regionen zwischen 6:00 und 8:00 Uhr, in ländlichen Regionen eher zw. 19:00 Uhr und Mitternacht. Duschen vor dem Schlafen und das Ablegen der Strassenkleidung ausserhalb des Schlafzimmers ist eine weitere Möglichkeit, Pollenexposition zu minimieren (TopPharm, 2022).
Quellen
AHA: Allergenspezifische Immuntherapie (Desensibilisierung). Abgerufen am 24. Mai 2022, von: https://www.aha.ch/allergiezentrum-schweiz/allergien-intoleranzen/wissenswertes/allergenspezifische-immuntherapie-desensibilisierung
DocCheck: Alpha-Sympathomimetikum. Abgerufen am 24. Mai 2022, von: https://flexikon.doccheck.com/de/Alpha-Sympathomimetikum?utm_source=www.doccheck.flexikon&utm_medium=web&utm_campaign=DC%2BSearch
MeteoSchweiz: Was Sie über Pollen wissen müssen (2016). Abgerufen am 29. Mai 2022, von: https://www.meteoschweiz.admin.ch/home/klima/klima-der-schweiz/polleninformationen.html
MeteoSchweiz: Polleninformation. Abgerufen am 29. Mai 2022, von: https://www.meteoschweiz.admin.ch/home/klima/klima-der-schweiz/polleninformationen.html
Immunologie für Jedermann. Das Immunsystem: Mastzellen Wächter und schnelle Boten in der Immunabwehr. Abgerufen am 29.Mai 2022, von: https://das-immunsystem.de/blog/2021/02/05/mastzellen-waechter-und-schnelle-boten-in-der-immunabwehr/
TopPharm: Pollenprognose (29.05.2022). Abgerufen am 29.Mai 2022, von: https://www.toppharm.ch/pollenprognose
ViaMedici: Allergien: Ursachen und Symptomatik. Abgerufen am 24. Mai 2022, von: https://viamedici.thieme.de/lernmodul/8668335/4958536/allergien+ursachen+und+symptomatik#impp
Studentin Humanmedizin
Medizinische Content-Providerin (MED4LIFE)
Die Blut-Hirn-Schranke ist auf den ersten Blick nicht intuitiv. Aus dem Namen könnte man darauf schliessen, dass kein Blut zum Gehirn darf, was jedoch nicht der Fall ist. Tatsächlich ist das Gehirn das Organ, das seine eigene Durchblutung dank komplexer Regulationsmechanismen über die Durchblutung anderer Organe steuern kann. Daraus leitet sich die sogenannte „selfish brain hypothesis“ (engl. für „Hypothese des eigennützigen Gehirns“) ab. Das Gehirn ist permanent auf Blut angewiesen, daher gibt es in der Versorgung auch Redundanzen. Würde also der Blutfluss von einer Arterie vermindert oder gar gestoppt, könnte das Versorgungsgebiet dieser Arterie von einer anderen Arterie kompensiert werden. Die Blut-Hirn-Schranke spricht somit nicht die Durchblutung selbst an, sondern die Zusammensetzung des Blutes. Sie reguliert sehr strikt, welche Bestandteile des Blutes ins Gehirn dürfen und welche nicht. Die Blut-Hirn-Schranke ist in der Gefässwand der intrakranialen Kapillaren, also der Kapillaren innerhalb des Schädels lokalisiert. Eine Kapillare ist die kleinste Aufästelung von einem Gefäss und der Ort des Stoffaustausches zwischen Blut und Gewebe. Darum macht es auch Sinn, dass die Blut-Hirn-Schranke nur in den Kapillaren lokalisiert ist, denn ausserhalb davon, beispielsweise in einer mittelgrossen Arterie, kann kein Stoffaustausch stattfinden.
Die Blut-Hirn-Schranke besteht aus drei Komponenten. Eine dichte Zellschicht bildet die Kapillarwand. Das ist die sogenannte Endothelzellschicht und sie ist permanent mit dem Blut in Kontakt, da sie die innerste Schicht der Gefässwand ist. Diese wie eine Mauer angeordneten Endothelzellen sind verbunden durch sogenannte „tight junctions“ (engl. für „enge Verknüpfungen“). Die Endothelzellschicht liegt auf einer dünnen bindegewebigen Membran, der sogenannten Basalmembran. Sie bildet quasi die Unterlage für die Endothelzellen. Ein weiterer Zelltyp, der an der Blut-Hirn-Schranke beteiligt ist, sind die sogenannten Astrozyten. Das sind Zellen des Gehirns, die charakteristisch sehr viele Fortsätze haben. Mit diesen Fortsätzen lagern sie sich von aussen an die Kapillaren. Kurz zusammengefasst sind die drei Komponenten der Blut-Hirn-Schranke die Endothelzellen mit ihren „tight junctions“, die Basalmembran und die Astrozytenfortsätze. Zur Veranschaulichung des Aufbaus dient dieses Bild (die Basalmembran ist hier nicht abgebildet):
a) Räumliche Anordnung
b) Querschnitt
Nun stellt sich natürlich die Frage nach der genauen Funktion der Blut-Hirn-Schranke. Dazu zuerst ein kurzer Ausflug zu den Zellen des Gehirns, den Neuronen. Die Neuronen sind gemeinsam mit den Herzmuskelzellen die einzige Zellgruppe, die keine oder kaum (das ist nach heutiger Forschung noch unklar) Regenerationsfähigkeit haben. Das heisst also, dass unsere Neuronen während des gesamten Lebens dieselben bleiben. Das ist sehr untypisch für Zellen. Die roten Blutkörperchen beispielsweise sterben natürlicherweise nach drei bis vier Monaten und werden durch Frische ersetzt. Diese fehlende Regenerationsfähigkeit im Gehirn führt nun dazu, dass das Gehirn alles daran setzt, die Neuronen nicht zu schädigen.
Die Blut-Hirn-Schranke reguliert wie oben erwähnt die Zusammensetzung des Blutes, welches das Gehirn versorgt. Im Blut befinden sich nebst den roten Blutkörperchen für den Sauerstofftransport auch die weissen Blutkörperchen, das sind Zellen des Immunsystems. Die Zellen des Immunsystems gehen oft brachial vor; es gibt zum Beispiel phagozytierende Zellen. Die Phagozytose ist die Aufnahme von Fremdmaterial durch eine andere Zelle. Man kann sich das vereinfacht als fressende Zellen vorstellen. So werden beispielsweise Bakterien eliminiert. Man sieht die brachiale Vorgehensweise des Immunsystems insbesondere auch bei Entzündungsreaktionen. Rötungen, Schwellungen, Eiter und weitere Reaktionen sind klassische Begleiterscheinung von Entzündungen, die durch das Immunsystem ausgelöst werden.
Wenn diese Prozesse jetzt eins zu eins im Gehirn ablaufen würden, käme es zu einer massiven Schädigung der Neuronen und das wäre fatal, da sie ja nicht regenerationsfähig sind. Die Blut-Hirn-Schranke reguliert daher vor allem den Durchtritt von Immunzellen ins Gehirn. Dieser Durchtritt ist sehr gering verglichen mit dem Rest des Körpers, die Blut-Hirn-Schranke ist jedoch keine absolute Barriere für Immunzellen. Das Gehirn ist also immunpriviligiert. Das bedeutet, dass das Immunsystem des Gehirns seine Prozesse spezifischer und regulierter durchführt als an anderen Orten im Körper. Das dient einzig und allein dazu, die Neuronen am Leben zu halten und keinesfalls zu schädigen. Diese Blut-Hirn-Schranke hat auch einen evolutionären Hintergrund. Evolutionstechnisch gesehen war/ist es besser, gesunde Menschen vor Hirnschädigungen zu schützen, als Menschen, die auf eine Immunreaktion im Gehirn angewiesen wären, zu helfen. Denn eine Immunreaktion im Gehirn würde, wie bereits erläutert, massive Schäden anrichten und somit die gesamtheitliche Gesundheitssituation nicht verbessern. Die Blut-Hirn-Schranke ist also evolutionstechnisch gesehen ein Kompromiss zwischen dem Immunsystem und den nicht regenerierbaren Neuronen.
Quelle
Bild: (2006). Roche Lexikon Medizin (5. Auflage). Urban & Fischer in Elsevier. https://www.gesundheit.de/lexika/medizin-lexikon/blut-hirn-schranke (zuletzt am 31.01.2022 um 11:30)
Student Humanmedizin
Medizinischer Content-Provider (MED4LIFE)